
Compressive Beamforming Accelerated with the Kronecker Array Transform

Bruno Masiero1, Vitor Nascimento2
1 University of Campinas, Brazil, Email: masiero@unicamp.br
2 University of São Paulo, Brazil, Email: vitor@lps.usp.br

Introduction

The problem of acoustic scene description with sensor ar-
rays is to determine the number and location of (usually
few) sound sources present in a (possibly noisy) sound
scene from measurements of the wave field with a mi-
crophone array. Conventional beamforming is the most
usual method to extract the sources’ direction-of-arrival
and emitted signal, even though it is characterized by low
spatial resolution.

The compressive beamforming (CB) method asserts that
spatially sparse signals can be recovered from arrays with
reduced number of sensors by solving a convex minimizati-
on problem. However, despite the fact that the compressi-
ve sensing framework applied in CB offers computational
efficiency compared to other sparsity promoting methods,
its iterative algorithm is still very time consuming when
compared with conventional beamforming. In the quest
for a real-time implementation of CB, we present the
Kronecker Array Transform (KAT) to speed up the bott-
leneck of the CB algorithm, namely, the matrix-vector
product calculation, which requires as trade-off for con-
siderable calculation speed up the use of a sensor array
with separable geometry.

Imaging Algorithms

We consider a sensor array composed of M micropho-
nes at Cartesian coordinates p0, · · · ,pM−1 ∈ R3 being
irradiated by an arbitrary sound field which we wish to
estimate. We model the sound field as the superposition
of the wave fields generated by N acoustic point sources
located at coordinates q0, · · · ,qN−1 ∈ R3, where N is
usually a large number in order to obtain an accurate
model.

The time-domain samples of each microphone are segmen-
ted into frames of K samples, and each frame is converted
to the frequency domain using the fast Fourier transform
(FFT). In the presence of additive noise, the M × 1 array
output vector for a single frequency ωk (0 < k < K/2) on
a single frame can be modelled as [3]

x(ωk) = V (ωk)y(ωk) + η(ωk), (1)

where y(ωk) = [y0(ωk) y1(ωk) · · · yN−1(ωk)]
T

repres-
ents the source signals in the frequency domain, and η(ωk)
represents frequency-domain noise. The array manifold
matrix V (ωk) = [v(q0, ωk) v(q1, ωk) · · · v(qN−1, ωk)],
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of size M × N , describes the transfer function between
each source n and each sensor m at frequency ωk.

Assuming that the point sources are in the far field, we
define the look direction for source n as un = −qn/ ‖qn‖.
The array manifold vector for source n is then given

by v(qn, ωk) =
[
ej(ωk/c)u

T
np0 · · · ej(ωk/c)u

T
npM−1

]T
. Plea-

se note that in the remaining of this manuscript we omit
the dependency on ωk in V (ωk), y(ωk) and x(ωk) in order
to simplify notation.

Spatial filtering

There exist several techniques for estimating y from the
array output vector x. The authors reviewed some of these
techniques in [6], using the cross spectral matrix (CSM)
for data extraction. We now adapt those techniques for
direct estimation with equation (1).

We start with the conventional beamformer (CBF) [3],
that is implemented as a weighted sum of the signals
captured by the microphones, i.e.,

ŷ = wH x, (2)

where w = [w1 w2 · · · wM ]T is a complex weight vec-
tor.

Deterministic Beamformers

There are several ways to calculate w, the most straight-
forward manner being CBF, where the spatial filter w
is chosen so that the filter output power is maximized
when the array is excited by a plane wave arriving from u.
Thus, we aim to solve

arg max
w

E
{
|ŷ|2
}
. (3)

Substituting (1) and (2) into (3) and assuming that the
sound field is composed of a single plane wave propagating
in direction −u, we obtain the cost function

J =
∣∣wHv(u)

∣∣2 |f |2 + ‖w‖2 σ2. (4)

Note that, assuming spatially uncorrelated noise,
σ2 = E

{
ηHη

}
. To avoid the trivial solution ‖w‖ → ∞,

CBF limits the filter gains by adding the restriction

‖w‖ = 1. In this case, J is maximized when
∣∣wHv(u)

∣∣2
is maximum. If we now apply the Cauchy-Schwarz
inequality to the this term we verify that∣∣wHv(u)

∣∣2 ≤ ‖w‖2 ‖v(u)‖2 = 1 ·
(
v(u)Hv(u)

)
, (5)



thus the value ofw that maximizes the filter output power
at frequency ωk when the array is excited by a plane wave
arriving from u is given by

wCBF(u) =
v(u)

‖v(u)‖
=
v(u)√
M

. (6)

Equation (6) indicates that the CBF acts by applying
a delay to the signals captured by each sensor, so that
the signals arriving from un are aligned in time and thus
constructively added. Note that the CBF is a deterministic
method since its weights do not depend on the statistics of
the incoming signal, but only on the “listening” direction
and the geometry of the array.

Another very common deterministic beamformer is the
delay-and-sum (DAS) beamformer [12]. Similarly to the
CBF, the DAS seeks to compensate for the relative delay
at each sensor and then averages the resulting signals,
thus

wDAS(u) =
1

M
v(u) =

v(u)

vH(u)v(u)
. (7)

Thus, both the DAS and the CBF are equivalent, except
for a scalar gain.

To obtain the acoustic image, we need to estimate the
sound intensity coming from each direction u in a pre-
defined grid, to obtain a vector of estimates ŷ. Using
a fixed beamformer for each direction in the grid and
assuming a perfect estimate of the signal, we have

ŷ = αV Hx, (8)

where α = M−1/2 for CBF and α = M−1 for DAS.

Convolutional bluring

Consider a single plane wave travelling along directi-
on −um. Assuming a discrete scan grid, the estimated
pixel corresponding to a generic look direction un, is given
by

ŷn = wH(un)v(um) ym ≡ P (un,um)ym. (9)

For a fixed source direction um, the term P (un,um),
considered as a function of un, is the array’s complex
point spread function (CPSF), which describes the array’s
complex response at directions un to an input plane wa-
ve arriving from direction −um. P (un,um) is defined
over the entire space and can be interpreted as a spati-
al sampling function that should ideally be maximally
sharp, that is (for our current discrete model), equal to
P (un,um) = δun,um , where δun,um = 1 if un = um and
zero otherwise. However, as microphone arrays have a
limited number of sensors, their typical CPSF will present
a larger beamwidth and consequently a smeared acoustic
image.

Now, considering that the sound field is composed of
a superposition of N plane waves, we verify that the
estimated acoustic image is given by

ŷ(un) =

N∑
m=1

P (un,um)y(um). (10)

Equation (10) can be interpreted as a spatial convoluti-
on [6, 13], i.e., when calculating an acoustic image with
conventional or optimal beamformers the result is, in fact,
the convolution of the actual acoustic image with the
array’s CPSF. This explains why images produced by
standard beamformers are commonly described as smea-
red or blurred.

Compressive beamforming

The beamforming techniques are robust to noise but suf-
fers from low resolution (as discussed above) and the
presence of sidelobes [8, 14, 15]. To counter these effects,
a recent work proposes to casts the problem as regularized
inverse problem [14].

Regularized signal reconstruction has been a topic of inte-
rest for many decades, and gained significant momentum
with the popularity of compressive sensing [1, 2]. Inde-
ed, many image reconstruction problems can be recast
as convex optimization problems, which can be solved
with computationally efficient iterative methods. Whi-
le many of these techniques were designed for imaging
applications, they have remained limited to fields such
as medical image reconstruction. Therefore, most of the-
se developments have not yet been applied to acoustic
imaging.

`1-Regularized Least Squares

We assume that the acoustic field arriving at the micro-
phone array is generated by only a few compact sources,
i.e., the source distribution is sparse. Note that in this
case the transfer matrix V will have more columns than
rows, so (1) is underdetermined. Prior models of the sour-
ce distribution can now be incorporated as constraints
that allow the underdetermined system of equations to
be solved. In this case we apply a sparsity constraint
to regularize the inversion problem, as suggested in [14],
casting the problem as a basis pursuit with denoising
problem (BPDN)—a kind of optimization problem that
has been studied in detail in the compressive sensing
literature [10]—which has the form

minimize
ŷ

‖ŷ‖1

subject to ‖x− V ŷ‖2 ≤ σ.
(11)

The `1 constraint min ‖ŷ‖1 serves to regularize the pro-
blem while forcing sparsity, and can be efficiently imple-
mented, e.g., with the SPGL1 algorithm [10].

TV-Regularized Least Squares

To address scenarios where the acoustic images are not
sparse in their canonical representations, another possibi-
lity is to reconstruct acoustic images with total variati-
on (TV) regularization.

The isotropic total variation norm is defined as

‖Y ‖TV =
∑
i,j

√
[∇xY ]

2
i,j + [∇yY ]2i,j (12)



where ∇x and ∇y are the first difference operators along
the x and y dimensions with periodic boundaries, and i
and j are the indices in the x and y dimensions, respec-
tively.

The following optimization problem can then be solved

minimize
ŷ

‖Ŷ ‖TV + µ/2 ‖x− V ŷ‖22 , (13)

where ŷ = vec{Ŷ } denotes vectorization by stacking the
columns of a matrix. The first term measures how much
an image oscillates. Therefore, it is smallest for images
with plateaus and monotonic transitions, and tends to
privilege simple solutions with small amounts of noise. The
second term ensures a good fit between the reconstructed
image and the measured data. This formulation was first
proposed for image denoising [9], and was later generalized
and applied successfully to many image reconstruction
problems. This method provides accurate and stable image
reconstructions with guaranteed convergence, and can be
efficiently implemented with, e.g., the TVAL3 algorithm
[4].

Compressive beamforming optimization problem are sol-
ved in an iterative manner and for large arrays, the calcu-
lation bottleneck lies in the matrix-vector products V y
and V Hx, similarly to the problem discussed in [8]. On
the other hand, as thoroughly discussed in [11], the de-
composition of a matrix in the Kronecker product of two
smaller matrices has the advantage that systems of the
form Mz ≡ (B ⊗C)z = r can be efficiently solved. We
now replicate the results presented by the authors in [5]
on how to accelerate calculations of (11) and (13).

Kronecker Array Transform

A planar array is separable if the microphone positions
form a rectangular grid [7] (all positions in the grid must
be occupied). The far-field manifold matrix associated
to M sensors distributed in a separable geometry and a
U-space parametrized rectangular scan grid is equivalent
to [7]

V [m,n] = e
jωkuT

x (n)px(m)/ce
jωkuT

y (n)py(m)/c (14)

where for simplicity we assumed the array to be horizon-
tally oriented, px and py are the sensor coordinates in
its x and y coordinates and ux and uy are the x and y
coordinates of the U-space parametrized look direction,
respectively [7].

We now define two new manifold matrices

V x[r, s] = e
jωkux(s)px(r)/c, (15a)

V y[g, h] = e
jωkuy(h)py(g)/c. (15b)

The horizontal array manifold matrix V x has size
Mx ×Nx, and the vertical array manifold matrix V y has
size My ×Ny. Mx and My are the number of coordinate
points in the x and y directions and Nx and Ny are the
number of grid points in the x and y directions, with the
restriction that M = MxMy and N = NxNy.

We verify that m = rMy + s and n = gNy + h.
This allows us to rewrite (15) in relation to the
indices m and n as V x [bm/Myc, bn/Nyc] and
V y [mod(m,My),mod(n,Ny)]. We further verify
that this is equivalent to the Kronecker product

V = V x ⊗ V y. (16)

Direct Fast Transform

The bottleneck for calculating (11) and (13) is the direct
matrix-vector product x = V y. Substituting (16) results
into

x = (V x ⊗ V y)y. (17)

Using the well known Kronecker product identity

vec(BZAT ) = (A⊗B) vec (Z) , (18)

we rewrite (17) as

X = V yY V
T
x , (19)

where x = vec(X) and y = vec(Y ). The output matrix
X ∈ CMy×Mx contains the values of x arranged in the
same geometrical disposition as the sensors in the array,
with the columns of the matrix representing the vertical
y-axis and the rows of the matrix representing the ho-
rizontal x-axis. The same is valid for the signal matrix
Y ∈ CNy×Nx , that contains all values of y arranged in
the same geometrical disposition as the scan grid.

Adjoint Fast Transform

To speed up the calculation of (8) we can apply (16) to
the adjoint matrix-vector product ŷ = V Hx, resulting
into

ŷ = (V x ⊗ V y)Hx, (20)

which can also be rewritten in a fast transform form using
identity (18), such that

Ŷ = V H
y XV

∗
x, (21)

which is the fast implementation of V H (note that it has
the same computational cost as the direct transform).

Acceleration with the KAT

We now discuss why the forms (19) and (21) are said to
be a fast transform of the direct matrix-vector product
V y and V Hx, respectively. We can readily verify that cal-
culation of the direct product V y requires MxMyNxNy

complex multiply-and-accumulate (MAC) operations. On
the other hand, using (19) the required number of ope-
rations reduces to MxNxNy +MxMyNy complex MACs

when Y V T
x is first computed, or to MyNxNy +MxMyNx

complex MACs when V yY is computed first.

If we assume thatNx = Ny =
√
N andMx = My =

√
M ,

and additionally, that the number of microphones contai-
ned in the array is substantially smaller than the number
of scan points, i.e. M � N , than a rough estimate of
the acceleration provided by the KAT lies in the order



of
√
M , which is in agreement with the acceleration esti-

mated in [11]. Further acceleration might be achieved
using the NFFT and NNFFT algorithms together with
the KAT, as discussed in [6]. However, for the sake of
brevity, we will refrain from this discussion here.

Conclusion

Conventional beamforming (CBF) is the most usual me-
thod to solve the problem of acoustic scene description,
i.e., to extract the sources’ direction-of-arrival and emitted
signal, even though CBF is characterized by low spati-
al resolution. New algorithms based on the compressive
sensing framework have been proposed to improve mi-
crophone array resolution, with the trade-off of increased
calculation time. In this manuscript we presented the
Kronecker Array Transform (KAT), capable of speeding
up calculations with the compressive beamforming frame-
work.
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